Risk-Informed Support Vector Machine Regression Model for Component Replacement—A Case Study of Railway Flange Lubricator
نویسندگان
چکیده
The railway-rolling stock wheel flange lubricator protects the wheels and railhead by lubricating their contacts. Failed or missing lubricators can lead to excessive wear, flats, cracks, rolling contact fatigue, rail damage, derailment accidents. In extreme cases, worn due nonlinear conditions may fire hazards, particularly in underground infrastructure. addition, location of present accessibility issues prolong diagnosis failure. This study therefore proposes an adaptive risk-based support vector regression (SVR) machine with a Gaussian kernel function that accurately proactively predict wear loss from small data set. While most fail owing loss, others premature failure modes such as cracks fatigue. risk-informed feature evaluates rates associated failures other than balanced determination optimised replacement frequency. proposed model was applied validated case for London train. findings showed maintenance inspection lubricator, balance between safety organisational resource constraints, average every 4000 km train operations.
منابع مشابه
Application of Support Vector Machine Regression for Predicting Critical Responses of Flexible Pavements
This paper aims to assess the application of Support Vector Machine (SVM) regression in order to analysis flexible pavements. To this end, 10000 Four-layer flexible pavement sections consisted of asphalt concrete layer, granular base layer, granular subbase layer, and subgrade soil were analyzed under the effect of standard axle loading using multi-layered elastic theory and pavement critical r...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملSupport Vector Machine for Interval Regression
Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity mode...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
A Fuzzy Model of Support Vector Regression Machine
Fuzziness must be considered in systems where available information is uncertain. A model of such a vague phenomenon might be represented as a fuzzy system equation which can be described by the fuzzy functions defined by Zadeh’s extension principle. In this paper, we incorporate the concept of fuzzy set theory into the support vector machine (SVM). This integration preserves the benefits of SV...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3088586